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Hover Performance Prediction Using Full-Potential Method
and Comparison with Experiments

E. Berton,* D. Favier," and C. Maresca*
University of Aix-Marseilles I and I, 13009 Marseilles, France

A computational and experimental effort to investigate the flow around rotor blades in hover is presented. The
experimental analysis of the flowfield in the immediate vicinity of the blade is supported by laser velocimetry (LV)
performed on the three-dimensional velocity field around the blade section and in its near wake. A specific LV data
processing method based on the momentum equation applied around a blade section has been developed to identify
the contribution of the induced-drag component to the total sectional drag coefficient. From the computational
approach, some improvements to a vortex embedding full-potential method are checked by direct comparisons
with test data. Comparisons are performed for overall rotor airloads (thrust and torque coefficients), local sectional
coefficients (lift and drag contributions), and flowfield characteristics, including the tip vortex path and the spanwise

circulation distribution.

Nomenclature
b = number of blades
Cd,Cdt = drag coefficient of airfoil section
Cdi = induced drag coefficient of airfoil section
Cdp = profile drag coefficient of airfoil section
Cl,Clt = lift coefficient of airfoil section
Co = rotor power coefficient
Coi = rotor induced-drag coefficient
Cr = rotor thrust coefficient
c = rotor blade chord, m
dDi = elementary induced-drag force, N
dF., = external elementary forces, N
dF, = horizontal elementary force, N
dF, = vertical elementary force, N
n = blade rotational frequency, revolutions per second
p = static pressure, Pa
q’ = vortical velocity, m s™!
R = rotor blade radius, m
Ro = rootcutout, m
r = radial distance from the rotation axis, m
T,Q = rotor thrust and torque, N, Nm
U,V,W = radial, tangential, and axial velocities, m/s
u,l = upper and lower side of the blade section
|4 = velocity vector
V. = rotational tip speed, QR, m s™!
r = blade circulation along the span, m? s™!
0 = collective pitch angle, deg
6y = blade twist law, deg
£s Poo = density, kg m~3
c = rotor solidity, bc/ 7 R
W, W, = angularblade rotation, deg
Q angularrotational frequency, rad s

I. Introduction

CCURATE prediction of hover performance is required for
goodrotor design. That is, it is necessary to accurately predict
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blade lift and drag distributions, and this capability is mainly a
function of the ability to predict the rotor wake. This paper concerns
the development of means to measure lift/drag distributions and
to predict these using a free-wake computational fluid dynamics
method.

To investigate drag mechanisms, previous experimental work! >
has been devoted to develop high-resolutionlaser velocimetry (LV)
methods that are able to determine sectional loads’ contributionsto
overall hover performance. Within this scope, an LV methodology
has been specially developed to investigate the flow in the rotation
plane, around the blade section and in its near wake. The so-called
Kutta and momentum equation (KME) method and potential and
momentum equation (PME) method have been derived for deter-
mining the lift and drag sectional coefficients along the blade span.

From the computationalapproach,a full vortex embedded poten-
tialmethod used in previouswork*~° for the predictionof rotorhover
performanceis described, with emphasison calculatingthe induced-
drag contribution to the total sectional drag term. This numerical
method has been implemented in a computer code, Phoenix II. In
the present work, three major improvements have been made to this
numerical method. As will be described, such improvements will
concern specifically the modification of the trailed marker convec-
tion process within the computational grid, an optimization of the
underrelaxationcoefficients relative to the vortical velocity compo-
nent, and an azimuthal extensionof the velocity calculationdomain,
including the flow region close to the blade trailing edge.

The objectivesof the presentstudy are first to determine the blade
sectional airloads by means of the momentum equation applied to
the three-dimensional velocity field measurements provided by the
LV methodology and then to assess the improvements given to the
Phoenix II computational method by direct comparisons with ex-
perimental data.

II. Experimental Methodology

The rotor is a model provided by the U.S. Army Aeroflightdy-
namics Directorate (AFDD) at NASA Ames Research Center and
has been tested at the Institutde Recherche sur les Phénoménes Hors
Equilibre/Laboratoire d’ Aérodynamique Subsonique Instationnaire
(IRPHE/ASI). The model-scalerotor was set up on the hovering test
rig of the S1-Luminy wind tunnel. The test stand itself was mounted
on an antivibration pad within the wind-tunnel test hall. The rotor
configuration tested was a two-bladed, 2.13-m-diam teetering rotor
with rectangular tip blades. The blades are of a stiff graphite com-
posite construction designed to minimize aeroelastic deformations.
Key geometric features of these blades are summarized in Table 1.

Several measurements techniques suited for surveying the flow
in the near- and far-wake regions and around the blades have
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Table1 AFDD one-seventh-scale rotor geometry

Property Value
Number of blades 2
Rotor radius 1066.8 mm (42.0 in.)
Inboard chord 89.4 mm (3.521in.)
Blade aspect ratio 11.928
Cutout 0.28R
Thrust-weighted solidity 0.05027
Twist distribution

0.28R 15.428 deg

0.86R 8.72 deg

1.0R 6.30 deg

Airfoil distribution VR-12, 3-deg tab

been developed at the IRPHE/ASI Laboratory' =3 including X-wires
anemometry and a long focal length (2 m) LV technique. Overall
force measurements (averaged thrust and torque) are performed by
means of a six-component balance mounted on the rotor hub. Tip
vortex paths are measured by means of a hot-wire technique that
allows the determination of the wake position as a function of the
blade azimuth.

The three-dimensional velocity field around a blade section lo-
cated at a spanwise station r/ R =const is measured by a high-
resolution fiber-optic laser velocimeter system. In the vicinity of the
blade, the velocity components U and V' and the axial component
W are determined by LV in a fixed coordinate system. A glycerin-
based smoke generatoris used to seed the flow. The use of a 500-step
encoder provides an azimuthal resolution of 0.72 deg. The velocity
components are statistically averaged over 50-80 samples per az-
imuthal step (AW =0.72 deg). The detailed characterizationof the
flowfieldis made possible by a combinationof the 0.1-mm step reso-
lution afforded by the laser optics traverse and the 0.3 mm diameter
of the LV system measuring volume. The initiation and synchro-
nization of the instantaneousacquisition data are realized by means
of a photocell delivering the azimuthal origin (¥ =0 deg).

Based on this LV methodology, two methods, KME and PME,
have been derived to determine lift and drag sectional coefficients.

A. KME Method for Local and Overall Airloads Determination

The KME method has been based on the application of the Kutta
and momentum equations to a general control surface surrounding
the blade section at a given radial station #/R. The KME method
is described in detail in Refs. 1-3. Note that the specific approach
used for the hovering flight case results from the periodicity of
the velocity field along the vertical branches of the control surface
extending between two consecutive blades (axisymetric flow). In
this case, the elementary total drag force dF, (see Fig. 1) can be
deduced from the determination, as a function of the blade azimuth
v(0 <y <27/b),oftheaxial W = W(y) and tangential V =V (y)
velocity components measured on the upper side and lower side of
the airfoil section:

The momentum equation is

—% dFexds=‘¢P-nds+ %(pq-n)-qu
S b b

2nlb
_de =pr / [W/V/ - Wu Vu]dl//
0

f Qc
QC =b dF,(Qr) dr, Co=—m—r, (V, =QR)
R prR2V3
0 e
The circulation/Kutta equation is
2/ b
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Fig. 1 KME method in hovering flight configuration.
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Fig. 2 Spanwise elementary forces (dF,, dF;) distributions derived
using the KME method: 6 = 6 deg and Q = 125.7 rad/s.

where

periodicity = (p, V, W),p = (p, V, W)

As shown in Fig. 1, the vertical lift componentd F; is deduced from
application of the Kutta equation and the circulation measurement
around a given radial section of the blade.

The overall thrust and power coefficients Cr and C are deduced
from the integration of the elementary forces dF, and d F, along the
blade span as shownin Fig. 1. The sectional airloads coefficients C,
and Cp, along the blade span are deduced from d F, and dF,, using the
flow streamlinesand the blade elementtheory aroundthe given blade
section' = to provide the local airfoil aecrodynamic incidence c.

An example of the results obtained on the present hovering ro-
tor configuration from the use of a KME method along the blade
span is given in Fig. 2 at the pitch angle value 6 =6 deg. Overall
thrustand power coefficients C7 and C, are, thus, obtained by inte-
grating the elementary forces dFy =dF,(r/ R) anddF, =dF,(r/ R)
distributions along the span. In Fig. 3, the results of the (dF,, dF,)
integration along the span are compared with those deduced from
direct overall measurements using the rotative balance, and the re-
sults show good agreement. The lift and drag linked to the local
aerodynamicincidence a of the airfoil section are obtained by pro-
jecting, on the lift and drag axis, the elementary forces dF, and dF;
measured by the KME-LV-based method.

B. PME Method for Induced-Drag Determination

The method based on the PME applied to the bidimensional ve-
locity field measured by LV around a given blade section is derived
as follows.!*!!
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Fig. 3 Comparisonofintegrated dF, and dF, distributions with global
thrust and torque measurements.
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Fig. 5 Momentum equation for general control surface around blade
section.

First consider the blade section an isolated airfoil; each contribu-
tion to the total drag Cdt is split into two contributions: the profile
drag Cdp and the induceddrag Cdi, as shown in Fig. 4. The viscous
pressure effects and skin friction contribute to the profile drag Cdp,
whereas the induced drag Cdi can be considered the result of the
pressure force contributionin the potential flow without the viscous
effects contribution.

Based on such a total drag decomposition, it is assumed that vis-
cous effects are significant only within the boundary layer and the
near wake shed at the trailing edge section. Inside of this region,
viscous effects appear as one of the sources of momentum respon-
sible of the profile drag contribution Cdp. Outside this region, the
potential flow appears as a source of momentum generating the
induced-drag contribution Cdi.

The PME method is based on the application of the momentum
equation to the control surface S =Sp + S, as shown in Fig. 5.

Here,

dDi =—/ PndS:/ PndS+/ p(lg-nhgdS
Sp Seo Seo

Therefore, the periodicity of the flow generated in the specific case
of hovering flight is used as shown in Fig. 6, and the elementary
induced drag force dDi resulting from the pressure forces acting on
a fictitious airfoil of Sp contour can be expressed as

2nlb 27lb
W, -V, d¥ —
v, 0

¥
dD; =/ W,-V,d¥ + W,-V,d¥ (1)
0

Table 2 Uncertainty estimates

Uncertainty

Measured quantity (averaged value), %
Tip vortex path (hot-wire anemometry) +3
Velocity field (laser Doppler velocimetry)

Axial velocity W *3

Tangential velocity V *3-5
Overall airloads (rotative balance) +2
Local airloads: lift and drag coefficients +4-7

and circulation (velocity integration)

A “iw ¥Y, B

Fig. 6 Momentum equation applied to 27w/b length-specific contour
for hovering rotor.

where ¥, and ¥, are the wake limits along the horizontal segment
AB of the contour. These wake limits can be easily determined from
the velocity profiles measured by LV on the lower side of the airfoil
section as described in Refs. 10 and 11.

C. Experimental Uncertainty Analysis

The measurement uncertainty analysis allows the separation and
quantification of random and systematic errors in the different mea-
surement methods implementedfor the presentstudy. These sources
of error are due to the instrumentation itself, the geometric align-
ment and positioning of the laser beams, the model geometry inac-
curacies, etc. Moreover, the KME and PME methods for local and
global airloads determinationintroduce additional inaccuracies be-
cause forces and moments are obtained as a result of integrating the
measured flow velocities. The estimation of all of these experimen-
tal uncertainties can be found in Refs. 1-3, 7, and 8. Specifically,
for the LV method, the procedure is based on comparisons of mea-
surements obtained from repeated runs and consists of a statistical
estimate of variance of velocity measurements. In the same way,
the uncertainty in the hot-wire measurementsis estimated using the
calibration data (the hot-wire probes are calibrated both before and
after the data acquisition). Measurement uncertainties that quantify
the deviations from averaged values are summarized in Table 2. Tip
vortex path uncertainties concern radial 7/ R and axial z/ R coordi-
nates of the vortex referred to the blade radius R.

III. Computational Method

One of the major tasks in helicopter rotor performance analysis
is the accurate calculation of the rotor lift and power.'>!* Typically,
lift is found by surface pressure integration and is generally well
predicted by finite difference methods when the induced inflow is
well modeled. However, power depends directly on drag, which is
very sensitive to small changes in surface pressure. The total drag
is composed of two parts: induced drag and profile drag. Induced
drag is the predominant hover drag mechanism and can account for
nearly 75% of the total power. The sectionalinduced-dragcoefficient
is obtained by pressure integration for an inviscid flow.

The computational method used in the present study is based
on the full potential equation with embedded vorticity regions*=°
This numerical method solves the compressible mass conservation
equation and is coupled with an integral boundary-layerroutine for
power prediction. This method, implemented in Phoenix II, uses a
vortex embedding (VE) scheme in potential flow. VE performs the
convection of thin vortical regions, such as a hovering rotor wake,
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using a Lagrangian wake tracking/felaxation method. This method
differs from classic vortex-latticemethods because the velocity field
is found using the mass conservationequation rather than the Biot-
Savart law. Therefore, VE has the ability to compute both the free-
wake evolutionand the inviscid compressible flow on the blade with
no geometric modeling limitations. Moreover, when combined with
aboundary-layersolver, this providesthe ability to predicthoverper-
formance with no need for initial prescribed wake or airfoil tables.

The numerical method is based on solving the steady mass con-
servation equation:

V(pV) =0 2

The total velocity V is split into an irrotational velocity field V ¢
and a rotational velocity field ¢":

V=Qxr+V¢+gq" 3)

The vortical part ¢” is concentrated near the sheet and represents
the trailed circulation. The term £ X r only results from rotational
coordinate transformation. A fixed grid is used to solve the com-
pressible potential flow equation to determine the potential ¢. To
solve the potential equation, the density p normalized by the cor-
responding freestream value takes the usual isentropic form away
from the sheet:

plpe ={1=[(y = DI2AMZLIQ xr? -1} @)

The vortical component ¢" is spread over several grid points
around the vortex sheet to concentrate the vorticity*~® The numer-
ical method locates the trailed sheet by a Lagrangian convection of
trailed circulation elements (markers). The circulation contained
in these markers is then imposed on the flow as a ¢" distribu-
tion (Clebsch type).”=® The solution process is an iteration between
the convection of trailed markers (convection of the shed vorticity)
and the solution to the potential equation (mass conservation). In
the present numerical method a Nash-Macdonald boundary-layer
schemeis implementedto compute the profile power. In this method,
von Kdrmdn’s integral equation is solved for the momentum thick-
ness. This accounts for weak viscous-inviscid interactions for an
approximate determination of the skin-frictiondrag.

IV. Results and Discussion

A. Numerical Improvements

The numerical procedure modifications that have been provided
to the Phoenix II prediction method are described here and de-
tailed in Refs. 7 and 8. These modifications were first made and
checked on a four-bladed rotor (ASI model 7), with aspect ratio of
15 (R =0.75 m and ¢ =0.05 m), rectangular tip shape, tip Mach
number of 0.40, and OA209 profile (9% thickness ONERA airfoil)
and linear twist such that pitch increases by 8.3 deg from root to tip.

One major drawback of the numerical procedure was a trend
of the markers to gather into the tip region and to be generally
sparse in the other regions (a major cause of instability). In fact,
it is very important for the numerical modeling to optimize the
distributionof markers so thatevery grid cell encompassingthe sheet
contains at least one marker. Therefore, first improvement concerns
the convection of the trailed markers within the computational grid.
This has been done by modifying the numerical distribution of the
markers below the rotor disk (code version Phoenix II-M). Figure 7
compares the results obtained from Phoenix II and Phoenix II-M
code versions on thrust and power coefficients. The comparisons
with the corresponding experimental data show an improvement of
the numerical prediction on the rotor power coefficient when using
the Phoenix II-M code version. It is also shown that the thrust and
torque coefficients totally converge in nearly 20 iterations.

The comparisonin Fig. 8 concerns calculation vs experiment on
the circulation distribution along the blade span and on the tip vor-
tex path. Note that the circulation peak is rather well predicted by
the Phoenix II-M code version, but that the contraction of the wake
[r/ R =r/R(Y¥)], however, is not sufficiently improved when com-
pared to experiments. These discrepancies relative to the evolution
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Fig. 7 Computed overall CT and CQ performance histories: rotor ASI
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of the vortex sheet are due to an underpredictionof the vortical ve-
locity ¢” under the rotor disk, as revealed by the evolution of z/ R
(Fig. 8), where no change in slope appears.

To overcome this problem, the second code improvement con-
cerns modeling of the vortical velocity ¢¥ for the entire azimuthal
calculation domain including the blade-vortex interactionregion at
Y =90 deg in the case of a four-bladed rotor (code version Phoenix
II-MV). These modifications have improved the radial location of
the tip vortices when compared to Phoenix II-M, as shown in Fig. 9.

The extension of the azimuthal domain is also of concern for the
calculation of the axial velocity after the first blade-vortex inter-
action. The improvement consists of an increase of ¢ based on
the change in slope of z/ R (code version Phoenix II-MVL). The
comparisons obtained with this final code version (Fig. 10) finally
show good agreement with experimental data both in the circulation
distribution and tip vortex path. However, there is still a tendency
to underpredict the far-field axial convectionrate.

B. Numerical Uncertainty Considerations

The present numerical simulation of the flow involves two es-
sential steps: the definition of a suitable mathematical model that
describes the physical system and the development and implemen-
tation of numerical techniques to compute a solution of the math-
ematical model using computers. Both steps introduce necessary
approximationsin the simulation, and the resulting errors must be
independently quantified. The validation of computational methods
is not a simple comparison of numerical results with experimental
data. It must be established that the mathematical model is logically
consistentand thatitis approximatedby a correctnumerical method,
which is in turn implemented in a correct computer program.'* Cal-
culation runs are performed using a Cray YMP C90, without any
special effort to vectorize the source code. A mesh refinement study
has been conducted to ensure that there were not significant varia-
tions in the solution when either the number or the position of the
mesh points is varied. A typical run using a fine enough mesh of
about 240,000 grid points and about 40 iterations requires about
4-h CPU to complete the simulation. In our case, the major part of
uncertainty concerns the geometric coordinates of the markers. The
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Fig. 10 Circulation distribution,and radial and axial convection of the
tip vortex: rotor ASI 7, four blades, and 6 = 10 deg. ——, measurements;
, Phoenix II-MV; and B, Phoenix II-MVL.

repeated process of updating the location of markers can propagate
errors in their location. This is an extremely significant problem be-
causethe algorithmuses the locationsto compute vortical velocities.

An uncertainty analysis, based on Ref. 14, was been carried out,’
which globally shows that numerical results have to be considered
with an averaged statisticaldiscrepancybar of about4% (overalland
local airloads, flowfield velocity, and tip vortex paths). Moreover,
comparisons with the experimental data have also given a global
view of the consistency of numerical results.

C. Airloads Numerical Prediction Versus Experiments

The computed results of the Phoenix II-MVL final code version,
concerning thrust, power, and the spanwise loads distribution, have
been also compared with the test data obtained using the earlier
mentioned KME and PME methods. The prediction of this Phoenix
II-MVL code has been checked vs experiments performed on the
rectangular AFDD rotor (see Table 1), for two collective pitches
(60 =6 and 10 deg) to assess the accuracy of the solutions.

On such a rotor, a typical run requires a mesh of about 240,000
grids points (see Fig. 11) with about 40 iterations and a run time of
about 4 h on a Cray YMP. The predicted CT vs CQ are compared
to experiments in Fig. 12, and agreement is shown to be good for
the two collective pitch values. The overall performance, however,
is better predicted at 6 =10 deg.

Figures 13 and 14 concern the total drag coefficient and the in-
duceddragcoefficientat differentspanwiselocationsalong the blade
of the AFDD rotor. Notice that the important part of the induced-
drag contribution to the total drag (80%) is correctly predicted by
the numerical method.
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For the case corresponding to the collective pitch 6 =6 deg
(Fig. 13), the computed results are shown to be in good agreement
with the experiments, especially for spanwise sections located be-
tween 7/ R =0.6 and r/ R = 1. On the other hand, there is a trend
to overpredict the drag near the root blade. It is shown that the
experimental peak at the locationr/ R =0.85, due to the tip vortex
interaction,is also correctly matched by the calculationmethod. The
same remarks stand for the 10-deg collective pitch value (Fig. 14).
Also notice that the spanwise position and the amplitude of the Cdi
kink observed near r/ R = 0.8 are better predicted by calculationin
this case.

V. Conclusions

A numerical and experimental investigation of the drag mecha-
nisms of a helicopter rotor in hover is described. The experimental
approach, conducted by means of overall and local measurements,
focused on determining the three-dimensionalvelocity field around
the blade and in its wake using an LV methodology and contributed
to improving the VE full potential method.

From the present results it is shown that the new Phoenix II-
MVL code version appears efficient to perform complete perfor-
mance computations. Among the different improvements given to
this numerical method, the most significant concerns the accuracy
improvement of the wake geometry and tip vortex trajectory predic-
tion. The main effect of this change is an improvement of the vortex
radial location that provided an improved overall loading and power
prediction. The present results also indicate good agreement with
experimental data for the induced and total drag coefficient along
the blade span.

Although the present Phoenix II-MVL code version still requires
further validation studies and comparisons with additional overall
and local databases, it appears to be an efficient design tool for rotor
blades in the hovering flight configuration.
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